skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brearley, J. Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractPolar systems are experiencing major changes that has significant implications for ocean circulation and global biogeochemistry. While these changes are accelerating, access to polar systems is decreasing as ships and logistical capabilities are declining. Autonomous underwater buoyancy gliders have proven to be robust technologies that are capable of filling sampling gaps. Gliders have also provided a more sustained presence in polar seas than ships are able. Along the West Antarctic Peninsula, one of the most rapidly warming regions on this planet, gliders have proven to be a useful tool being used by the international community to link land research stations without requiring major research vessel ship support. The gliders are capable of adaptive sampling of subsurface features not visible from satellites, sustained sampling to characterize seasonal dynamics, and they increasingly play a central role in the management of natural resources. Future challenges to expand their utility include: (A) developing robust navigation under ice, which would allow gliders to provide a sustained bridge between the research stations when ship support is declining, and (B) expanding online resources to provide the international community open access to quality data in near real time. These advances will accelerate the use of gliders to fill critical sampling gaps for these remote ocean environments. 
    more » « less
  2. Abstract A rapid, high‐resolution shipboard survey, using a combination of lowered and expendable hydrographic measurements and vessel‐mounted acoustic Doppler current profiler data, provided a unique three‐dimensional view of an Arctic anti‐cyclonic cold‐core eddy. The eddy was situated 50‐km seaward of the Chukchi Sea shelfbreak over the 1,000 m isobath, embedded in the offshore side of the Chukchi slope current. The eddy core, centered near 150‐m depth, consisted of newly ventilated Pacific winter water which was high in nitrate and dissolved oxygen. Its fluorescence signal was due to phaeopigments rather than chlorophyll, indicating that photosynthesis was no longer active, consistent with an eddy age on the order of months. Subtracting out the slope current signal demonstrated that the eddy velocity field was symmetrical with a peak azimuthal speed of order 10 cm s−1. Its Rossby number was ~0.4, consistent with the fact that the measured cyclogeostrophic velocity was dominated by the geostrophic component. Different scenarios are discussed regarding how the eddy became embedded in the slope current, and what the associated ramifications are with respect to eddy spin‐down and ventilation of the Canada Basin halocline. 
    more » « less
  3. Abstract The west Antarctic Peninsula (WAP) is a region of marked climatic variability, exhibiting strong changes in sea ice extent, retreat of most of its glaciers, and shifts in the amount and form of precipitation. These changes can have significant impacts on the oceanic freshwater budget and marine biogeochemical processes; it is thus important to ascertain the relative balance of the drivers and the spatial scales over which they operate. We present a novel 7‐year summer‐season (October to March; 2011 to 2018) series of oxygen isotopes in seawater (δ18O), augmented with some winter sampling, collected adjacent to Anvers Island at the WAP. These data are used to attribute oceanic freshwater changes to sea ice and meteoric sources, and to deduce information on the spatial scales over which the changes are driven. Sea ice melt shows significant seasonality (∼9% range) and marked interannual changes, with pronounced maxima in seasons 2013/14 and 2016/17. Both of these extrema are driven by anomalous winds, but reflect strongly contrasting dynamic and thermodynamic sea ice responses. Meteoric water also shows seasonality (∼7% range) with interannual variability reflecting changes in the input of accumulated precipitation and glacial melt to the ocean. Unlike sea ice melt, meteoric water extremes are especially pronounced in thin (<10 m) surface layers close to the proximate glacier, associated with enhanced ocean stratification. Isotopic tracers help to deconvolve the complex spatio‐temporal scales inherent in the coastal freshwater budget, and hence improve our knowledge of the separate and cumulative physical and ecological impacts. 
    more » « less
  4. null (Ed.)